home *** CD-ROM | disk | FTP | other *** search
- /* bresenhm.c */
-
- /*
- * Mesa 3-D graphics library
- * Version: 1.2
- * Copyright (C) 1995 Brian Paul (brianp@ssec.wisc.edu)
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the Free
- * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-
- /*
- $Id: bresenhm.c,v 1.4 1995/06/09 17:45:58 brianp Exp $
-
- $Log: bresenhm.c,v $
- * Revision 1.4 1995/06/09 17:45:58 brianp
- * renamed to bresenhm.[ch]
- *
- * Revision 1.3 1995/05/22 21:02:41 brianp
- * Release 1.2
- *
- * Revision 1.2 1995/03/04 19:29:44 brianp
- * 1.1 beta revision
- *
- * Revision 1.1 1995/02/24 14:18:04 brianp
- * Initial revision
- *
- */
-
-
- #include "context.h"
-
-
- /*
- * Evaluate Bresenham's integer line drawing algorithm. Put each
- * coordinate generated into x[] and y[] arrays.
- *
- * Input: x1,y1 - coordinates of first endpoint
- * x2,y2 - coordinates of second endpoint
- * Output: x, y - array of coordinates generated by the algorithm
- * Return: number of values put into x[] and y[].
- */
- GLuint gl_bresenham( GLint x1, GLint y1, GLint x2, GLint y2,
- GLint x[], GLint y[] )
- {
- register GLint dx, dy, xf, yf, a, b, c, i;
-
- if (x2>x1) {
- dx = x2-x1;
- xf = 1;
- }
- else {
- dx = x1-x2;
- xf = -1;
- }
-
- if (y2>y1) {
- dy = y2-y1;
- yf = 1;
- }
- else {
- dy = y1-y2;
- yf = -1;
- }
-
- #define PLOT( X, Y ) x[i] = X; y[i] = Y;
-
- if (dx>dy) {
- a = dy+dy;
- c = a-dx;
- b = c-dx;
- for (i=0;i<=dx;i++) {
- PLOT( x1, y1 );
- x1 += xf;
- if (c<0) {
- c += a;
- }
- else {
- c += b;
- y1 += yf;
- }
- }
- return dx+1;
- }
- else {
- a = dx+dx;
- c = a-dy;
- b = c-dy;
- for (i=0;i<=dy;i++) {
- PLOT( x1, y1 );
- y1 += yf;
- if (c<0) {
- c += a;
- }
- else {
- c += b;
- x1 += xf;
- }
- }
- return dy+1;
- }
-
- #undef PLOT
- }
-
-
-
-
- /*
- * Evaluate Bresenham's line algorithm with stippling.
- * Input: x1, y1, x2, y2 - endpoints of line segment
- * Output: x, y - arrays of pixels along the line
- * mask - indicates draw/don't draw for each pixel
- */
- GLuint gl_stippled_bresenham( GLint x1, GLint y1, GLint x2, GLint y2,
- GLint x[], GLint y[], GLubyte mask[] )
- {
- GLint dx, dy, xf, yf, a, b, c, i;
- GLushort m;
-
- if (x2>x1) {
- dx = x2-x1;
- xf = 1;
- }
- else {
- dx = x1-x2;
- xf = -1;
- }
-
- if (y2>y1) {
- dy = y2-y1;
- yf = 1;
- }
- else {
- dy = y1-y2;
- yf = -1;
- }
-
- #define PLOT( X, Y ) \
- m = 1 << ((CC.StippleCounter/CC.Line.StippleFactor) & 0xf); \
- if (CC.Line.StipplePattern & m) { \
- mask[i] = 1; \
- x[i] = X; \
- y[i] = Y; \
- } \
- else { \
- mask[i] = 0; \
- } \
- CC.StippleCounter++;
-
- if (dx>dy) {
- a = dy+dy;
- c = a-dx;
- b = c-dx;
- for (i=0;i<=dx;i++) {
- PLOT( x1, y1 );
- x1 += xf;
- if (c<0) {
- c += a;
- }
- else {
- c += b;
- y1 += yf;
- }
- }
- return dx+1;
- }
- else {
- a = dx+dx;
- c = a-dy;
- b = c-dy;
- for (i=0;i<=dy;i++) {
- PLOT( x1, y1 );
- y1 += yf;
- if (c<0) {
- c += a;
- }
- else {
- c += b;
- x1 += xf;
- }
- }
- return dy+1;
- }
-
- #undef PLOT
- }
-